

Rooftop Solar Potential Assessment:

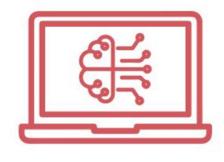
CSTEP's High Resolution Imagery & Geospatial Approach

Rooftop Solar Conclave: Ahmedabad, Gujarat

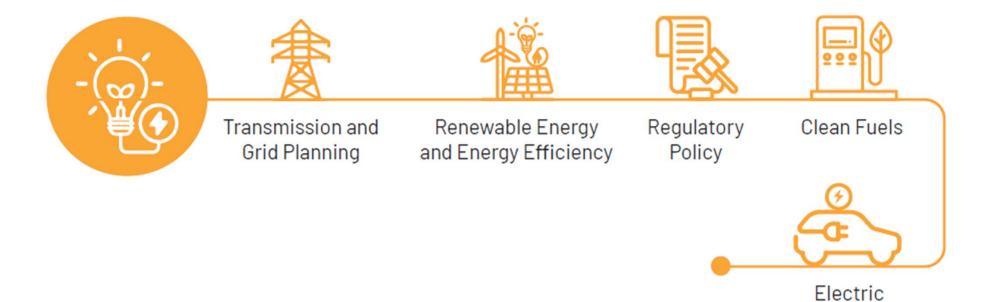
16-12-2023

About CSTEP

- Not-for-Profit Organisation (Section 25)
 - Offices in Bengaluru and Noida
- **Essence**: We work with governments and Institutions to develop solutions using science & technology
- Vision: To be the foremost institution for policy analysis in India
- Mission: To enrich policymaking with innovative approaches using science & technology for a


sustainable, secure, and inclusive society

CSTEP's Focus Areas



Secure & Sustainable Future India's Clean Energy Transition

Clean Air for All

Digital Transformation

India's Clean Energy Transition

www.cstep.in

Mobility

Background – CSTEP RTPV Work

Light Detection and Ranging (LiDAR) work in Bengaluru (2017-20)

- 1st of its kind project in India for RTPV potential assessment
- 1,076 sq. km. covered 2.8 GW potential on 8.2 lakh rooftops
- ~12 MW installed using CSTEP's DPRs on govt. buildings and BMTC depots
- MoU and NDA signed with BESCOM; Technical and knowledge partner for BESCOM's RTPV implementation program

Drone-based aerial imagery work (2020-present)

Madhya Pradesh:

- Bhopal, Sanchi, Indore, Gwalior and Jabalpur (~600 sq. km.) 3.5 GW potential on 5.5 lakh rooftops
- MoU and NDA signed with MPPMCL

Chhattisgarh:

- Raipur, Naya Raipur, Bilaspur, Durg-Bhilai, Korba and Raigarh (~400 sq. km.) 3 GW potential on 4.5 lakh rooftops
- MoU signed with CSPDCL

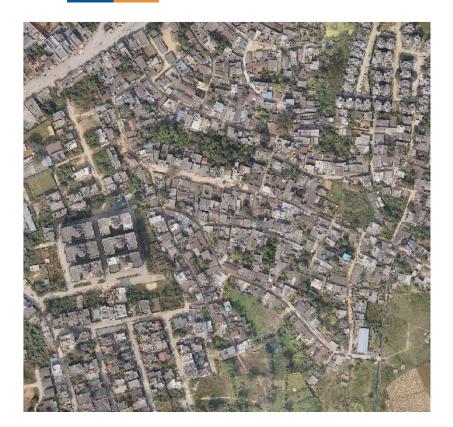
Others:

Initiated work in Chennai, Kozhikode, Guwahati and Salt Lake

Aerial Data Collection and preprocessing

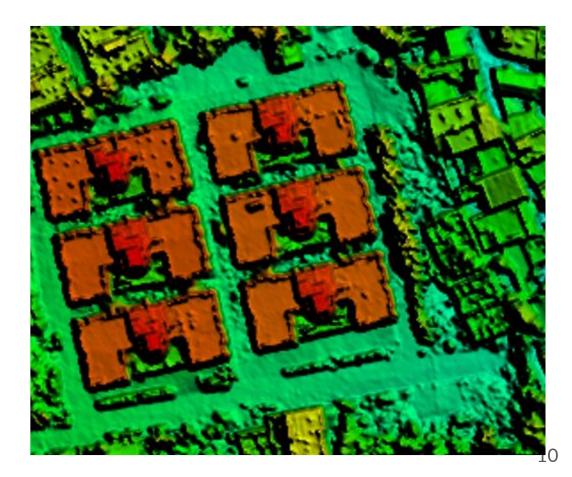
- High resolution true-ortho (5 cm GSD) for digitisation & identification of rooftop area
- **DSM (digital surface model)** of rooftop and surrounding area for
 - Slope
 - Aspect
 - Shading analysis
 - Roof top solar potential analysis
 - Point cloud for 3d model generation of building for visualisation

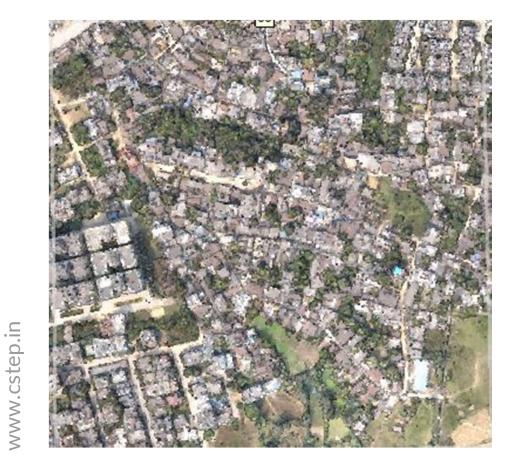
Aerial Data Collection and preprocessing



High resolution 20 MP JPEG Image

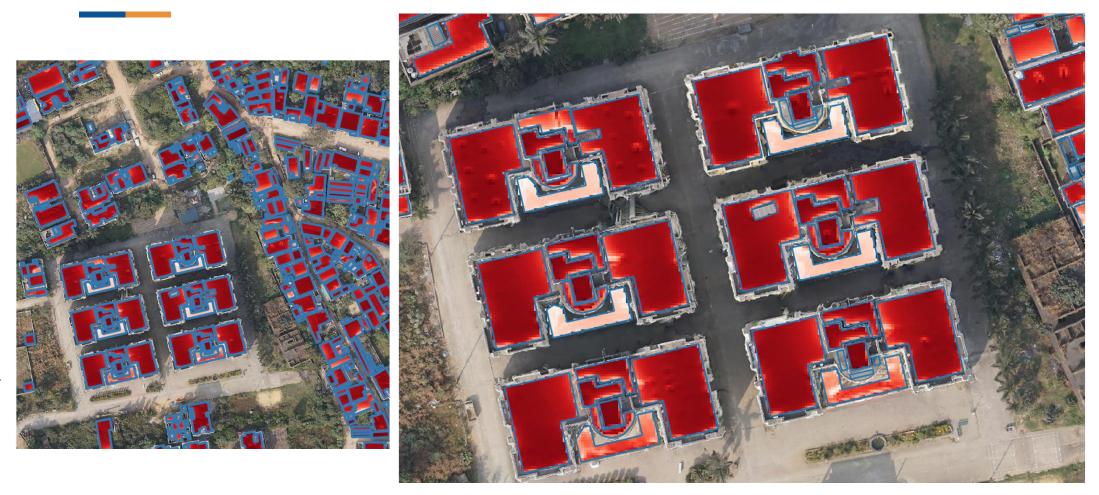
True Ortho 3-5 cm GSD





DSM

Point Cloud



Rooftop Digitization

Rooftop Solar Potential

RTSE - Objective

• Consumer

- Accurate information regarding system size, techno-economics, shadow-free area on roof
- Marketplace to choose reliable developers and financing option
- Assist in go/no-go decision making

• DISCOMs & Developers

- Data room for demand aggregation
- Customer acquisition
- Web-based portal for Consumers, DISCOMs and developers
 - Align with MNRE's national rooftop portal

RTSE – Outputs

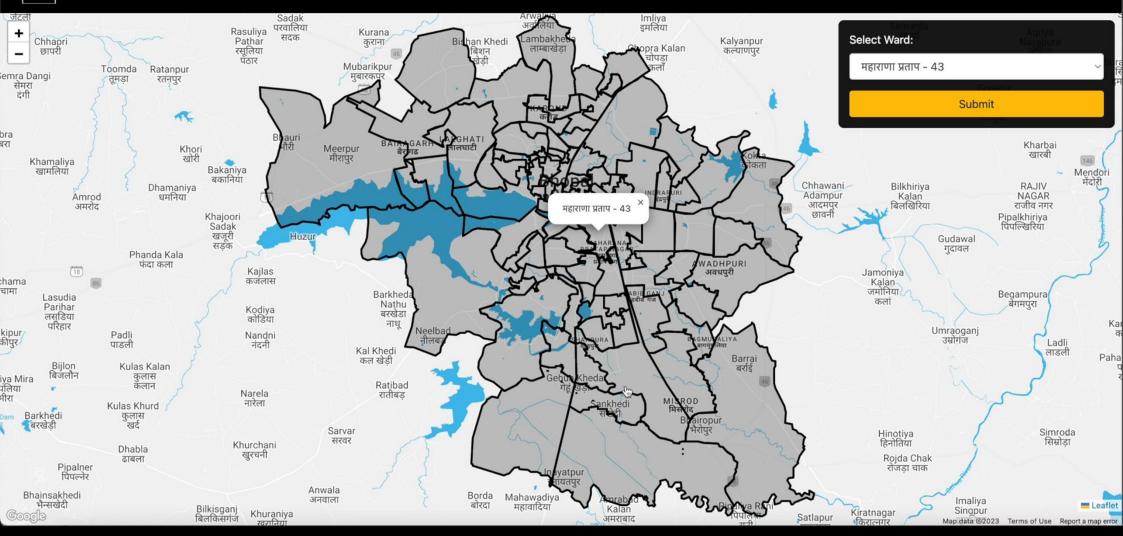
• Consumer Report (customizable)

- Existing
 - System size, placement on roof
 - Cost & techno-economics (payback and IRR)
 - Technical performance (generation and CUF)
- Proposed
 - Choice of vendors with costing and offerings
 - Choice of financing options with offerings
 - Integration with MNRE national rooftop portal and DISCOM portals

• DISCOMs and Developers

- Subdivision-wise data room
- DPRs of all suitable rooftops in the ranges <3 kW, 3-10 kW, 10-50 kW, >50 kW

Home About Manual Support CSTEP


Unlock Rooftop Solar Potential of Your City

Get started

Microsoft Teams classic

ROOFTOP SOLAR EXPLORER MADHYA PRADESH

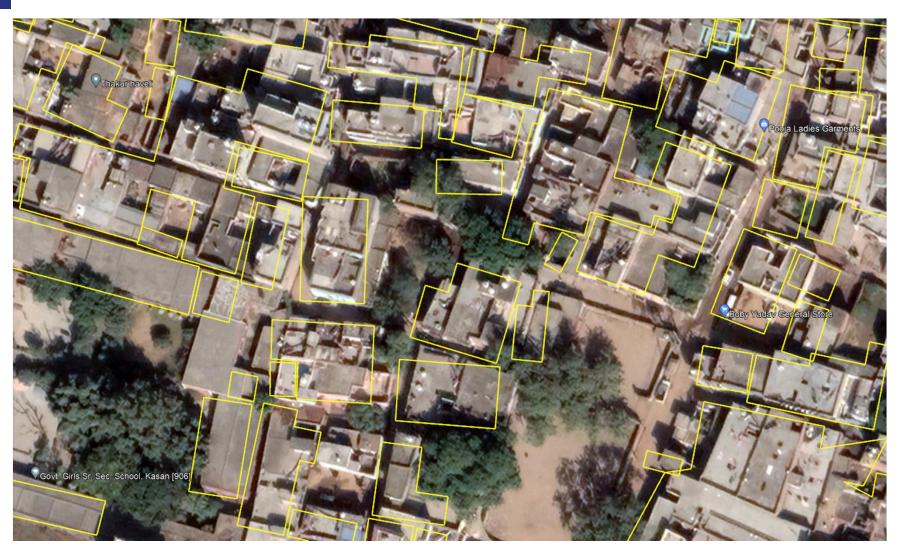
Home CSTEP Logged in as Sap Logout

Potential Assessment Results – Aerial Imagery

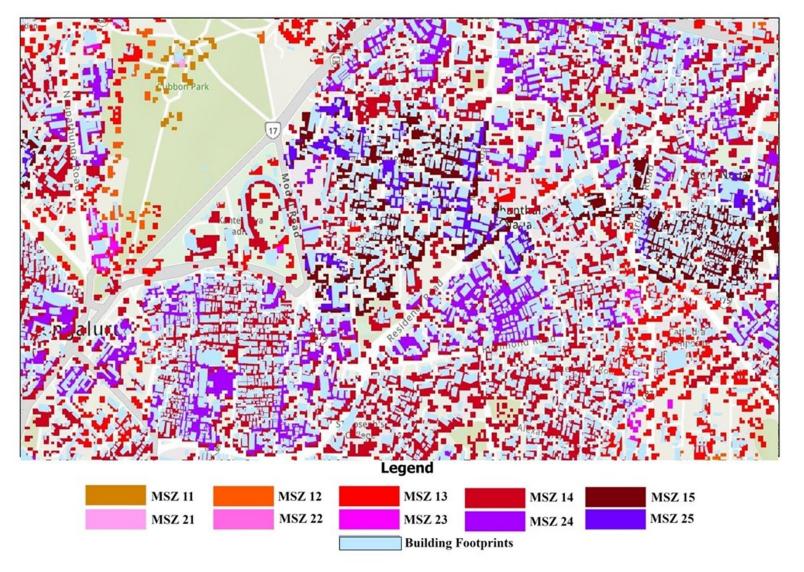
Bangalore			Bhopal			Indore			Gwalior			Jabalpur		
System Size	No. of Polygons	Capacity (MW)	System Size	No. of Polygons	Capacity (MW)	System Size	No. of Polygons	Capacity (MW)	System Size	No. of Polygons	Capacity (MW)	System Size	No. of Polygons	Capacity (MW)
kW ≤ 3	675986	765	kW ≤ 3	104531	202	kW ≤ 3	84081	171	kW ≤ 3	62785	118	kW ≤ 3	22261	45
3 < kW ≤ 10	149267	763	3 < kW ≤ 10	78980	428	3 < kW ≤ 10	83425	453	3 < kW ≤ 10	42328	229	3 < kW ≤ 10	25456	144
10 < kW ≤ 50	40953	790	10 < kW ≤ 50	18988	354	10 < kW ≤ 50	23639	462	10 < kW ≤ 50	9040	159	10 < kW ≤ 50	5847	98
kW > 50	4538	481	kW > 50	1662	144	kW > 50	3640	362	kW > 50	546	45	kW > 50	241	21
	870744	2799		204161	1128		194785	1449		114699	550		53805	307
Raipur			Durg			Bilaspur			Korba			Raigarh		
	Raipur			Durg			Bilaspur			Korba			Raigarh	
System Size	Raipur No. of Polygons	Capacity (MW)	System Size	Durg No. of Polygons	Capacity (MW)	System Size	Bilaspur No. of Polygons	Capacity (MW)	System Size	Korba No. of Polygons	Capacity (MW)	System Size	Raigarh No. of Polygons	Capacity (MW)
System Size kW ≤ 3	No. of		System Size kW ≤ 3	No. of		System Size kW ≤ 3	No. of		System Size kW ≤ 3	No. of		System Size kW ≤ 3	No. of	
	No. of Polygons	(MW)		No. of Polygons	(MW)		No. of Polygons	(MW)		No. of Polygons	(MW)		No. of Polygons	(MW)
kW≤3	No. of Polygons 68301	(MW) 135	kW ≤ 3	No. of Polygons 52245	(MW) 104	kW ≤ 3	No. of Polygons 33986	(MW) 66	kW ≤ 3	No. of Polygons 22794	(MW) 44	kW ≤ 3	No. of Polygons 9625	(MW) 19
kW ≤ 3 3 < kW ≤ 10	No. of Polygons 68301 77923	(MW) 135 448	kW ≤ 3 3 < kW ≤ 10	No. of Polygons 52245 55543	(MW) 104 322	kW ≤ 3 3 < kW ≤ 10	No. of Polygons 33986 39417	(MW) 66 232	kW ≤ 3 3 < kW ≤ 10	No. of Polygons 22794 17569	(MW) 44 99	kW ≤ 3 3 < kW ≤ 10	No. of Polygons 9625 10767	(MW) 19 63

Taxonomy – Morphological Settlement Zones (MSZ)

01 : MSZ, open spaces, low vegetation surfaces NDVI <= 0.3 02 : MSZ, open spaces, medium vegetation surfaces 0.3 < NDVI <=0.5 03 : MSZ, open spaces, high vegetation surfaces NDVI > 0.5 04 : MSZ, open spaces, water surfaces LAND < 0.5 05 : MSZ, open spaces, road surfaces 11 : MSZ, built spaces, residential, building height <= 3m 12 : MSZ, built spaces, residential, 3m < building height <= 6m 13 : MSZ, built spaces, residential, 6m < building height <= 15m</p> 14 : MSZ, built spaces, residential, 15m < building height <= 30m 15 : MSZ, built spaces, residential, building height > 30m 21 : MSZ, built spaces, non-residential, building height <= 3m 22 : MSZ, built spaces, non-residential, 3m < building height <= 6m 23 : MSZ, built spaces, non-residential, 6m < building height <= 15m 24 : MSZ, built spaces, non-residential, 15m < building height <= 30m 25 : MSZ, built spaces, non-residential, building height > 30m

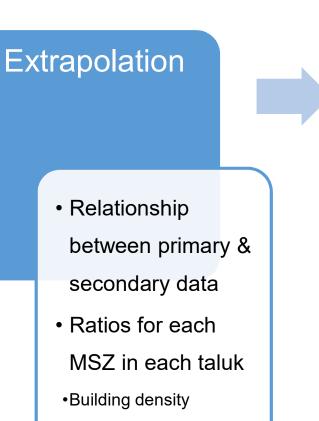

European Commission, **GHSL Data Package 2023**, Publications Office of the European Union, Luxembourg, 2023 10 m resolution data

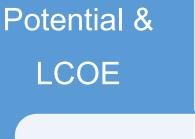
Taxonomy – Building Polygons (LiDAR/UAV)


- 5 cm res. 3D data
- 50 cm DSM
- 11 cities
 - Bengaluru
 - Bhopal
 - Indore
 - Gwalior
 - Jabalpur
 - Sanchi
 - Durg-Bhilai
 - Raipur
 - Raigarh
 - Korba
 - Bilaspur

Taxonomy – Microsoft Global Building Footprints

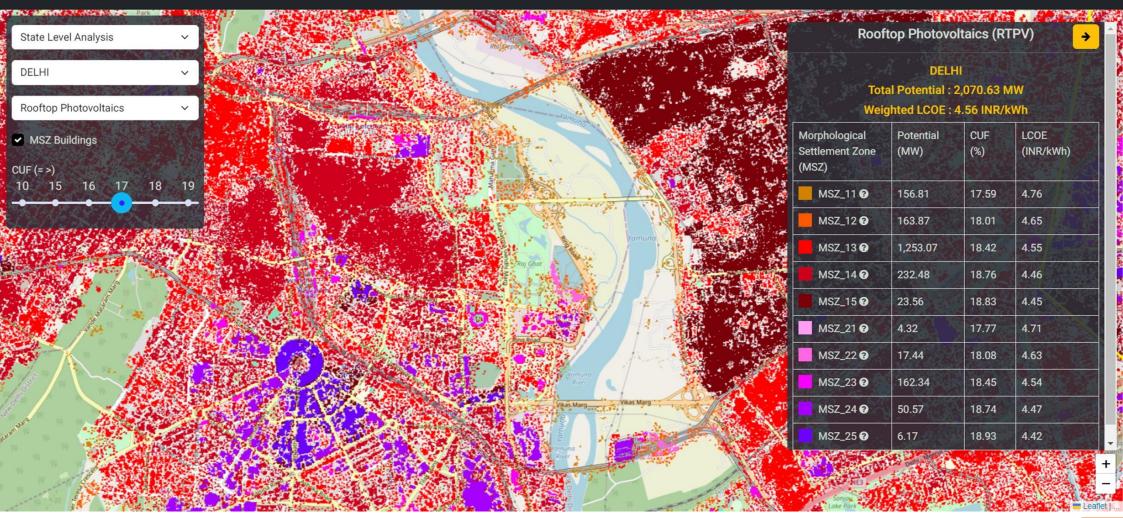
- 30-200 cm res. 2D data
- ~84 million buildings


Methodology


Methodology

Imagery & polygons

- Primary data (11 cities)
- Secondary data (MSZ, TMY, MS building footprints)


- •% of suitable area
- •CUF based on shading
- profile & GHI

- Standard modules
 - & conversion
 - efficiencies
- Market lending norms

Methodology – Results

MNRE Decentralised Solar Atlas

https://beta.cstep.in/mnredev/

24

Thank You!

<u>shantanu@cstep.in</u> <u>saptakg@cstep.in</u>